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A New 2-D Image Reconstruction Algorithm Based
on FDTD and Design Sensitivity Analysis
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Abstract—This paper proposes a numerical algorithm that re-
constructs the complex permittivity profile of unknown scatterers
by the design sensitivity analysis (DSA) and topology optimization
technique. By introducing the DSA and adjoint-variable method,
the derivatives of the error function with respect to the complex
permittivity variables can be calculated, and the material prop-
erty in each cell can be changed simultaneously using sensitivity
information. The steepest descent method is used as an optimiza-
tion technique. The proposed method is validated by applying it to
reconstructions of unknown two-dimensional scatterers that are il-
luminated by TM with a Gaussian-pulsed plane wave.

Index Terms—Design sensitivity analysis (DSA), finite-difference
time-domain (FDTD) methods, inverse problems, topology
optimization.

I. INTRODUCTION

I MAGING OF the permittivity and conductivity profiles of
unknown objects from a measured scattered electromagnetic

field has been of interest to microwave engineers for many years.
This is because it is considered to be fundamental and essen-
tial in microwave-imaging applications. Recently, the interest
of microwave imaging has increased in fields such as biolog-
ical application, and the key step for implementing microwave
imaging is an efficient solution of the associated inverse-scat-
tering problem.

The reconstruction of a complex permittivity profile in in-
homogeneous structures can be considered to be an optimiza-
tion problem to minimize the difference between the measured
field data and calculated ones by controlling the complex di-
electric permittivity in the test domain. Such a difference is de-
fined as an error function that needs to be minimized. However,
the inverse-scattering problems are known to have nonlinear and
ill-posed properties due to the lack of the measured information
and the multiscattering effects between the objects [1]. In order
to effectively reconstruct the unknown profiles, the first-order
method using the gradient information and an iterative tech-
nique has been preferred.
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Reformulation of the inverse problem as a nonlinear op-
timization one and its solution using various optimization
methods has been suggested [2]–[11]. In most approaches,
the direct scattering problem is treated by means of the
method of moments (MoM) and the inverse techniques use
gradient-based algorithms that minimize the appropriately
chosen cost function [2]–[5]. In these approaches, the direct
scattering problem solution is achieved either during each iter-
ation or it is implemented iteratively within the cost-function
minimization. Other approaches have introduced the use of
the finite-element method (FEM) or its hybrid coupling with
the boundary-element method (BEM), while the inversion is
based on the conjugate-gradient [6] or Newton’s [7] iterative
schemes, respectively.

Inversion algorithms using the finite-difference time-domain
(FDTD) technique have been developed by many researchers.
Chew developed a time-domain approach in the distorted-Born
iterative method to reconstruct the images [8]. This method has
added the advantage of information for target recognition avail-
able from ultrawide-band illumination [9]. Hagnesset al. sug-
gest an algorithm for breast cancer detection using pulsed con-
focal microwave imaging [10], [11]. The unknown object is il-
luminated and the backscattered signal is recorded for a number
of antenna positions. A time shift and add algorithm is applied
to the set of recorded signals in order to enhance returns from
the high-contrast objects and reduce clutter.

The concept of design sensitivity analysis (DSA) has been
studied and presented in structural engineering [14], and the
FEM approach of the inverse-scattering problem using a con-
jugate-gradient optimization technique and DSA has been sug-
gested by Rekanoset al. [6]. Recently, an optimization method
based on the FDTD and DSA in the time domain was proposed
[12], [13]. The DSA concerns the relationship between the de-
sign goal (or the objective function) and the design variables.
That is, the DSA is to evaluate the derivative of the objective
function with respect to the design variables.

In this paper, a new reconstruction algorithm that uses the
derivatives information calculated by the FDTD technique and
DSA is proposed. The adjoint-variable method is adopted in
order to effectively calculate the derivative information of the
error function [14]. The adjoint-variable method can calculate
the sensitivity of all inversion variables (i.e., complex permit-
tivity variables) by only one solving process of the adjoint-vari-
able equation. Each iteration of the proposed method requires
two solving processes, i.e., one for the forward problem and the
other for the adjoint equation to calculate the sensitivity of each
complex permittivity variable. Therefore, our algorithm needs
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Fig. 1. 2-D inverse scattering problem for dielectric cylinders.D is the
objective domain to be reconstructed.E denotes the incident electric field
intensity,E denotes the scattered electric-field intensity, and Rx denotes the
receiving antenna. The incident wave is assumed to be a plane wave.

roughly twice the CPU time compared to the normal FDTD for-
ward analysis. In addition, the characteristics of the convergence
can be improved by introducing the topology optimization based
on normalized material density [15].

To demonstrate the validity of the method, the image recon-
struction algorithm is applied to reconstruct the unknown two-
dimensional (2-D) scatterers that are illuminated by TMwith a
Gaussian-pulsed plane wave. As a numerical example, the lossy
object surrounded by air or the lossy medium, which has a rel-
atively high permittivity, was reconstructed. Furthermore, mul-
tiple objects that are immersed in the lossy medium were recon-
structed. In these numerical examples, the dispersive property
of the permittivity and conductivity was not considered. The ob-
jective function was defined as the square of the error between
the measured scattered electric and calculated fields.

The total-field/scattered-field technique was introduced
in order to realize a plane-wave source [16]. To reduce the
computational domain, Berenger’s perfectly matched layer
(PML) technique [17] is also adopted when the electromagnetic
fields and adjoint variables were analyzed.

II. M ATHEMATICAL FORMULATION AND ANALYSIS

Let us consider the scatterers of an arbitrary bounded cross
section (Fig. 1). The domain of the scatterers () is illuminated
by plane waves, which are polarized in the-direction. To re-
construct the unknown complex permittivity distribution of scat-
terers in the objective domain, it is necessary to minimize the
difference between the calculated scattered fields and measured
ones. To evaluate such a difference, the error or objective func-
tion is defined as

(1)

where is the number of transmitters, is the number of re-
ceivers, and is the fixed final time. is the measured scat-
tered field and is the calculated one at the measuring point.

Applying the first variation to (1) with respect to the inversion
variable vector , the derivatives of error function can be

obtained as

(2)

where
In general, the scattered field variable has an implicit re-

lationship with the variables , and can be obtained
using an indirect method. To reduce the computing time, the ad-
joint-variable method is introduced.

A. DSA Based on FETD

When the FDTD technique is used in the inversion process,
the design sensitivity cannot be obtained directly because the
adjoint-variable equation in the FDTD algorithm cannot be
derived in a straightforward manner, while that in FEM can
be. Therefore, an adjoint-variable equation that is derived from
system matrices of the finite-element time-domain (FETD)
formulation is employed. This adjoint-variable equation is then
transformed as the coupled Maxwellian curl equations.

From the Maxwell’s equations, the 2-D scalar wave
equation can be derived, which is written as

(3)

where denotes the relative permittivity, denotes the con-
ductivity, denotes the velocity of light in free space, and

denotes the impressed electric-current density. In this algo-
rithm, the direct problem is solved by the FDTD technique. The
electromagnetic fields can be calculated without spurious solu-
tions. Therefore, the vector basis function is not needed to cal-
culate the sensitivity information. Applying the nodal element
and Galerkin’s formula to (3), this equation can be discretized
and the matrix equation can be constructed as

(4a)

(4b)

(4c)

where the dot denotes the time derivative andis the -direc-
tion component of the electric field at the node in the 2-D
grid. The elemental matrices and load vector of (4) contain the
integral of the following:

(5a)

(5b)

(5c)

(5d)

where is a nodal basis function of the grid. Using the adjoint
variable , the adjoint equation of (4) can be derived as follows
[12] :

(6)
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subject to

(7)

Equation (7) is the terminal condition onfor solving (6).
To deal with the terminal conditions, the backward time scheme

is introduced. Equation (6) can be then converted
into the initial-value problem. Using (2) and (6), the design sen-
sitivity (2) can be transformed into

(8a)

(8b)

where

(9)

The notation indicates that the argument is held constant
for the derivative process with respect toand . Note that
is the only matrix dependent on and is the only matrix
dependent on .

B. DSA Based on FDTD

From the uniqueness theorem, (6) can be transformed into the
Maxwellian coupled curl equations as follows:

(10a)

(10b)

(10c)

subject to

(11)

In addition, these adjoint-variable vectors satisfy the consti-
tutive relation as the electromagnetic field vectors, i.e.,

(12)

(13)

In (6), is an infinitesimal pseudoelectric current element.
Consequently, this pseudocurrent density is not an exact source
of the FDTD scheme

(14)

In order to apply to the FDTD solver, the FDTD pseu-
docurrent density can be represented as follows [18]:

(15)

By inserting (15) into (14) and assuming that the grid is a
square quadrilateral, the right-hand side of (14) can be written
as

(16)

Fig. 2. Inversion algorithm using the FDTD technique. Geometry of mesh is
fixed during all iteration.

Fig. 3. Numerical configuration of problem. TheTM plane wave is incident
at each direction, and at each Rx Ant. positionE field is measured.

where is the area of the grid. Therefore, can be written as

(17)

III. T OPOLOGYOPTIMIZATION

Most of the shape optimization techniques using the design
sensitivity method have some difficulties in being applied to
the inverse problems. This is because the topology of the de-
sign space should be given before the optimization and only the
boundaries between the different materials are modified during
the optimization process. This feature becomes a significant
shortcoming in the inverse problems where there is no predeter-
mined shape or topology. However, the topology optimization
method does not require any preset shape or topology. The ma-
terial property of each design cell in the whole design area is
controlled simultaneously in each iteration step. Therefore, any
shape or topology can be generated using this method. For these
reasons, the topology optimization method is best suited for in-
verse problems.

In order to smoothly reconstruct the complex permittivity
profiles, the topology optimization based on the normalized ma-
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(a) (b)

(c)

Fig. 4. Reconstruction of a single object in air after 100 iterations. (a) Original" , � shape. (b) Reconstructed" . (c) Reconstructed�.

terial density is introduced [15]. In the topology optimization,
the test domain to be reconstructed is divided into small grids
and the material composition of each grid is taken as the inver-
sion variable. By controlling the material composition of each
grid, the unknown object relative permittivity and conductivity
can be reconstructed. The key concept of this method is to deter-
mine how to treat the material composition in order to estimate
the objective function, and to reconstruct the final object shape.
There are two methods for treating the material composition,
homogenization method, and density method. The homogeniza-
tion method provides the solid material a physical and mathe-
matical basis for the calculation of the material properties of the
composite or intermediate materials. On the other hand, the den-
sity method takes the material density of each grid as the design
variable and is not concerned with the microstructure, but only
with the results. In this paper, the density method is preferred.

To apply the density method to the reconstruction scheme, the
normalized density vector of material is introduced, each of
element hasavaluebetween0–1.Using thenormalizeddensity
vector , the complex permittivity can be represented as

(18a)

(18b)

where is the relative permittivity of the real material in the
test domain, is the conductivity of the real material in the test

Fig. 5. Objective function value normalized by the initial value versus the
iteration number when single object in air case reconstruction.

domain, is the normalized density, which takes the value be-
tween 0–1, and is the exponent that penalizes the intermediate
density for faster convergence.

When is larger, the intermediate density is more heavily
penalized, which means it can be reconstructed more efficiently.
However, larger values of can also limit the design space at
the same time. Usually, the value ofcan be chosen between
2–4 by considering this tradeoff [19]. That is, if the intermediate
density is not a significant problem and the user wishes to access
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(a) (b)

(c)

Fig. 6. Reconstruction of a single object in lossy medium after 245 iterations. (a) Original" , � shape. (b) Reconstructed" . (c) Reconstructed�.

a larger design space, can be used. On the other hand,
if the design space is sufficiently smooth and the intermediate
material has a major difficulty in optimization, should be
used. For our case, is selected because our problems has
the abrupt change of profile. The normalized material density
is defined at each grid in the test domain. Whenis 0, it means
the permittivity is that of air, and when is 1, the permittivity is
that of a solid material. When is 0, it means the conductivity
is that of air, and when is 1, the conductivity is that of a
material that has an assumable maximum conductivity.value
between 0–1 corresponds to the intermediate material property.
By inserting (18) into (8), one can rewrite the derivative error
function with respect to the normalized material densityas

(19a)

(19b)

Equation (10a)–(10c) can then be also solved by using the
FDTD technique with terminal conditions (11), and introducing

the electric fields and adjoint variables solved by using the
FDTD technique, one can also calculate the design sensitivity.
Fig. 2 shows the inversion algorithm using the FDTD technique
and design sensitivity.

IV. NUMERICAL EXAMPLES

The efficiency of the proposed method is validated by means
of three numerical 2-D examples. The unknown scatterers were
assumed to lie entirely within total field region ( in Fig. 3) of

square cells. Therefore, the total number of unknowns for
inverse problem is 2 . The standard Yee algorithm is used for
the FDTD technique, and the geometry of the rectangular mesh
is fixed during the entire iteration. The scatterers are illuminated
by the plane waves with a Gaussian pulse from dif-
ferent angles of incidence, uniformly distributed around the total
field region. The scattered field is measured at points lying
on a circle centered in test domain and uniformly distributed
around the scatterer for each illumination. The measurements
are simulated by solving the direct problem.

The numerical configuration of the problem is shown
in Fig. 3. In order to realize a plane-wave source, the
total-field/scattered-field scheme is adopted. The incident wave
is a Gaussian pulse modulated by a sine function with a center
frequency of 5 GHz.
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(a) (b)

(c)

Fig. 7. Reconstruction result of multiple objects in lossy material after 100 iterations. (a) Original" , � shape. (c) Reconstructed" . (d) Reconstructed�.

A. Single Object in Air or Lossy Medium

As a first example, a lossy single scatterer of size
in the test domain is considered, whereis the wavelength
in the surrounding medium. The number of transmitters and
receivers is 16 each. The measurement points are located in the
scattered-field region ( in Fig. 3) around the central point
of the test domain. The number of grids in the test domain is
60 60. Fig. 4(a) shows the original and profile of the
presented model. The medium is composed of two concentric
square cylinders. The inner cylinder with , is
surrounded by a cylinder with , and the other
region is filled with air. The initial guess was that of surrounding
material. Fig. 4(b) and (c) shows the reconstructed profiles,
which are obtained after 100 iterations. Fig. 5 shows the values
of the objective function normalized by the initial value as the
iteration proceeds. After 100 iterations, the objective function
value variation is less than 2%.

Another example of the single object reconstruction is showed
inFig.6.Thenumberoftransmittersandreceivers isthesameasin
thepreviousexample.Theinnercylinderwith , is
surroundedbya cylinder with , , and the other re-
gion is filledwith the lossymediumwith , .Fig.6
shows the original profiles and reconstructed results after 245 it-
erations. To reconstruct the profiles, an additional number of iter-
ations is needed because of high permittivity of the surrounding
medium.

TABLE I
CPU TIME FOR ONE INVERSEITERATION

B. Multiple Objects in Lossy Medium

Another interesting problem is the reconstruction of multiple
distinct scatterers surrounded by lossy material like water. As
an example, two lossy scatterers are considered in the test
domain. Each object has a size of . The number
of transmitters and receivers is 32, and the number of grids in
the test domain is 60 60. Fig. 7(a) shows the original and

of the presented model. Two cylinders with ,
are surrounded by a lossy material with ,

. Fig. 7(b) and (c) shows the reconstructed profiles that are
obtained after 100 iterations. After 100 iterations, the position
of each object can be detected correctly, but the profiles of the
relative permittivity and conductivity showed some variation at
the corner point of the object.

Table I represents the computational time that is measured
on an 800-MHz Pentium III personal computer (PC). The CPU
time of the sensitivity analysis is relatively small compared with
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that of the field or adjoint analysis, and the CPU time of the field
analysis is nearly equal to that of the adjoint analysis. For the
lossy surrounding material, the time step is significantly reduced
to meet the stability condition of the FDTD technique.

V. CONCLUSION

A numerical 2-D reconstruction algorithm for microwave
imaging in the case has been presented. The algorithm
utilizes the FDTD, DSA, and topology optimization technique.
Using the adjoint-variable method, the design sensitivity is
obtained by only two simulations at each design process,
regardless of the number of design variables.

The method has been applied to the scattering objects illu-
minated by the pulse-type wave source. Using the proposed
method, lossy dielectric objects surrounded by air or immersed
in a lossy medium with a high permittivity have been success-
fully reconstructed in both the dielectric constant and electric
conductivity.
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